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I. ABSTRACT

The analysis of microstrip circuits via integral
equation techniques has proven as the most effi-
cient, and yet rigorous and full-wave, approach.
Nonetheless, the latter requires the evaluation of
the impedance matrix which elements, in turn, are
generally obtained after a two-dimensional numer-
ical integration.

We introduce a coordinate transformation al-
lowing to reduce, for the mixed potential inte-
gral equation, the numerical integration to a one-
dimensional case. Moreover, by using the spatial
domain closed-form of the Green’s function and
by phenomenologically separating the relevant con-
tributions, we demonstrate that a significant re-
duction of computer times is indeed feasible and
achievable.

II. INTRODUCTION

The efficient evaluation of the impedance matrix
Z of a planar circuit is a crucial issue for achieving
accurate and fast analyses. The Z computation,
as attained by Method of Moments (MoM) dis-
cretization of the Mixed-Potential Integral Equa-
tion (MPIE) [1], [2], in fact, is not entirely straight-
forward, and the related numerical efforts are still
considerable.

In previous approaches, the numerical core of the
computation of the impedance matrix was repre-
sented by a time-demanding two-dimensional inte-
gration, even though several efforts have been made
to improve the convergence of this computation [3],
[4]. Some attempts in this sense have also been
made focussing on appropriate choices of the basis
and test functions [5], with attention paid on the
meshing performed on the problem’s domain.

In this paper, a substantial enhancement of the
efficiency of the impedance matrix evaluation is
achieved by reducing the two-dimensional integra-
tion to a single-dimension one. Even though this is
achieved by partitioning the problem domain into
equal cells, this does not represent a limitation to
the presented technique, as different optimum sizes
for the elementary cells can be automatically de-
tected in several regions of a single circuit, so that
an optimum accuracy is ensured.

Moreover, a detailed study on the phenomenolog-
ical behaviour of the impedance matrix elements is
performed, and its conclusions implemented so that
substantial speed-ups are achieved.

III. Z-MATRIX EVALUATION

Let us denote with E® the scattered electric field,
with Zg and Jg the surface impedance and electric
current density, respectively, and let us introduce
the Green’s functions GA and GY9 for the surface
electric current density Jg and for the surface elec-
tric charge density gg. With the above notation the
standard MPIE is written as:

n x ES(r) = n x (ZsJs ——jw/s GA . JgdS'+

V/qu"Ist') 0

Closed-form Green’s functions can be used [6],
(7], [8], expressed as the sum of three main contri-
butions:

«» direct terms and quasi-dynamic images;

« surface waves;

« complex images;
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so that we can write them as:

G:qu:v = G:‘:}z,o + Gﬁz,SW + G?:c,cz (2)

Equation (1) is discretized and solved using the
Galerkin’s MoM, producing a linear system
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A. Efficient Evaluation Via 1-D Integration

The entries Z;; in the impedance matrix repre-
sent the tangential electric field generated by the
j-th basis function and weighted by the i-th test
one. In previous approaches [5], the entries of the
matrix in (3) are expressed as a four-dimensional
integral:

<f,Grg>= / / @) / / G(r)g(z,y) dr'dy dody (4)

r = (z— )¢+ (y — ¥)?, and the four-fold in-
tegration appearing in (4) is therein transformed
into a two-dimensional one. In this contribution,
we show how the latter integration can be reduced
to a one-dimensional integral.

The usual change of variables,

z—12' =u z+z' =p
o ' (5)
Y-y =v y+y =gq

reduces the problem to a double integration,
hence providing

//f(x,y)//G(\/($~m’)"‘+(y—y’)2)

g(z',v) dz’ dy drdy = %// G(u,v)

u+p v+q) (p—u q—v)
//f( e vda) (B2 02 g dudv

Letting D, be the domain for the x-variable, we
can write

1 +p v+
swo2g [ [ p(4E2),
D(p)v D(q)

p—u g—v _
( 5 )dpdq~ (6)

=/ / F(&, Mol —u,n—w)dldn
D(¢)Y D(n)

Now we have a two-variable integration

/ / G(u,v)S(u,v)dudv (7

D(w)JD(w)

With the following new change of variables:
u=rcosg v=rsing (8)

we can write:

/ / G(u,v)S(u,v)dudv =
D(u)J D(v)

ro r€2(r)
=/ G(r)r/ S(rcosé,rsing)dédr  (9)
r1 £1(r)

Thanks to the fact that the Green’s functions
only depend on the source-test distance r, W(r)
can be evaluated in closed form:

A Ea(r) .
W(r) =/ » S(rcosé,rsin€)de (10)
&i(r

Finally we have:

Fz,y) [ [ GG/ —2)2+ (y—y)?)
[ []

g(z',y)dz’' dy drdy = (11)

= /T:Z W(r)G(r)rdr

Using polar coordinates Green’s functions are not
singular, and with a suitable choice [5] of basis and
test functions W (r) is integrable in Riemann sense.
The S(u,v) and W(r), as well as the forms of do-
mains D(p) and D(g), &1(r) and &(r), r1 and 79,
depend on the choice of the basis and test functions

and their domain of definition.
After evaluating W (r), the Z-matrix terms can
be written as:

Tz = / [Wlx(r)G;‘m(r)_‘-}iwzz(r)m(r)]rdr

ny:/ [”"Q%Wsz(r)Gq(r)]rdr "
12

Zyx=/ [—éW;;y(r)Gq(r)]rdr
A 1 q
Zyy = / [W1y(r)ny(r) - FWz +(MG (r)] rdr
thus demonstrating that the elements of the

impedance matrix can be evaluated by solving a
one-dimensional integral.
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B. Results with 1-D Integration

The accuracy and efficiency of the implemented
method is demonstrated for a patch antenna, re-
ported in the literature [7], and sketched in Fig. 1.
In Fig. 2 we compare the time performance of an
MPIE/MoM package implementing a 1-D integra-
tion of the (4) with respect to the previous 2-D inte-
gration proposed by [5]. In the x-axis the required
numerical accuracy is reported, on the y-axis the
corresponding computing time for both approaches.
As easily predictable, the 1-D integration is highly
superior. From the circuit schematic in Fig. 1, it
is also apparent that the requirement of an equal-
cell meshing is not limiting, as suitable sizes of ele-
mentary cells for the different regions of a complex
circuit can automatically be detected with simple
heuristic considerations.

IV. PHENOMENOLOGICAL BEHAVIOUR OF THE
Z-MATRIX ELEMENTS

The 1-D integration significantly reduces the
computation time of the impedance matrix. In ad-
dition, further advantage can be attained by con-
sidering the behaviour of the integration kernels in
(12). A major role in the numerical evaluation of
(12), is played by the Green’s function; its expres-
sion as reported in (2) separates the contribution
of different physical phenomena (quasi-static, sur-
face waves and complex images) in the interactions
among cells.

Therefore, by considering each element of the
Z matrix as the sum of the three above men-
tioned contributions, a phenomenological analysis
has been performed in order to investigate how
these contributions are linked with the circuit phys-
ical parameters. Referring to the circuit in Fig. 1,
results are sketched in Table I, where, for the sake
of conciseness, we report just some of the avail-
able results. It can be observed that for each ele-
ment of the impedance matrix, the three Green’s
function’s contributions are separated, and a num-
ber of cells along x and y directions determined,
so that the corresponding contribution can be ne-
glected for distances between basis and test greater
than that number of cells. For instance, we under-
stand from Table I that the basis-test interaction
for the quasi-static term Z,,, is effective for dis-
tances smaller than 11 cells along x, and 9 cells
along vy, as well as the surface wave contribution

can be nearly neglected. We consider negligeable
each interaction smaller than 107°Z,,(0, 0),, where
Zg2(0,0), is the direct-term evaluated in the (0,0)
cell (the same term is the maximum entry in the
impedance matrix).

Z element || z-cells | y-cells
Zrzo 11 9
ZLzzsw 1 2
Zzyo 6 6
Z:cysw 0 0
Zmyci 7 6
Table I

A. Results Achieved by Ezploiting the Phenomeno-
logical Analysis

The phenomenological analysis has demonstrated
that, for a fixed threshold, some contributions in
the integration kernels in (12) can be omitted,
with a consequent enhancement in the code per-
formance. Moreover, and of much higher impact,
we can avoid the computation of many interacting
terms, which prove to be nearly negligeable. In
fact, the use of the above mentioned 105 thresh-
old affects the final results with a maximum error
of less than 1%.

The implementation of the results of the phe-
nomenological analysis allows a huge speed-up. Re-
ferring to the circuit in Fig. 1, in Table II the use
of a traditional approach is compared with our ap-
proach, implementing a 1-D integration technique
and a phenomenological analysis. Times (in sec-
onds) refer to the evaluation of the Z-matrix for a
single frequency point. An IBM RS6000 250 T has
been used.

Method Computing Time
Standard 2040
With 1-D Int. 411
With 1-D Int.+
Phen. An. 86

Table II

V. CONCLUSION

In this paper we have introduced a procedure for
evaluating the elements of the impedance matrix,
as resulting from the mixed-potential integral equa-
tion, via a single one-dimensional numerical inte-
gration.
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Moreover, we have also shown that it is possible
to take advantage of the fact that the direct term,
the surface waves and the complex images appear-
ing in the spatial domain closed-form Green’s func-
tion play different roles according to the problem
geometrical parametrization. Hence, depending on
the respective positions of basis and test functions,
we can neglect some contributions without loss of
accuracy and with significant reduction of the nu-
merical burden. Speed-ups of more than 22 times
have been observed, with respect to the previous
state-of-the art implementations of the same ap-
proach.

REFERENCES

[1] J. R. Mosig and F. E. Gardiol, ” General integral equa-
tion formulation for microstrip antennas and scatter-
ers”, Proc. Inst. Elec. Eng., pt. H: Microwave Optics
Antennas, vol. 132: pp. 424432, Dec. 1985.

[2] J. R. Mosig, ” Arbitrarly shaped microstrip structures
and their analysis with a mixed potential integral equa-
tion”, IEEE Trans. Microwave Theory Tech., vol. 36:
pp. 314-323, Feb. 1988.

[3] L. Barlatey, J. R. Mosig and T. Sphicopoulos, ” Analysis
of stacked microstrip patches with a mixed potential in-
tegral equation”, IEEFE Trans. Microwave Theory Tech.,
vol. 38: pp. 608-615, May 1990.

[4 M. I. Aksun and R. Mittra, "Estimation of spuri-
ous radiation from microstrip etches using closed-form
Green’s functions”, IEEE Trans. Microwave Theory
Tech., vol. 40: pp. 2063-2070, Nov. 1992.

{5] M. L Aksun and R. Mittra, " Choices of expansion and
testing functions for the method of moments applied
to a class of electromagnetic problems”, IEEE Trans.
Microwave Theory Tech., vol. 41: pp. 503-508, Mar.
1993.

[6] M. I Aksun and R. Mittra, ”Derivation of closed-form
Green’s functions for a general microstrip geometry”,
IEEE Trans. Microwave Theory Tech., vol. 40: pp.
2055-2062, Nov. 1992.

[7] G. Dural and M. I. Aksun, ”Closed-form Green’s func-
tions for general sources and stratified media”, IEEE
Trans. Microwave Theory Tech., vol. 43: pp. 1545-1552,
Jul. 1995.

[8] N. Kynaiman and M. I. Aksun, ”Efficient and Accu-
rate EM Simulation Technique for Analysis and Design
of MMICs”, Int. J. MW and MM Wave Comp. Aided
Eng., vol. 37: pp. 344-358, Sept. 1997.

—— PrAescmn;'ethod )
" o Aksun and Mittra {7}

(b)

Fig. 1. Input impedance on the Smith chart (b) of
the microstrip line center fed square antenna with
a tuning stub (a). Physical dimensions: €, = 2.62,
d =0.794 mm, a = b = 28.6 mm, w = 2.2 mm, [,
= 26.4 mm, l; = 4.4 mm, d; = 4.4 mm. Frequency
range: 2.98-3.3 GHz.
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Fig. 2. A comparison between the 1-D and the 2-D inte-
gration’s performance. Times refer to a PC Pentium
100 MHz. On the x-axis, the accuracy required to
make the integration converge is reported.
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