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1. ABSTRACT

The analysis of microstrip circuits via integral

equation techniques has proven as the most effi-

cient, and yet rigorous and full-wave, approach.

Nonetheless, the latter requires the evaluation of

the impedance matrix which elements, in turn, are

generally obtained after a two-dimensional numer-

ical integration.

We introduce a coordinate transformation al-

lowing to reduce, for the mixed potential inte-

gral equation, the numerical integration to a one-

dimensional case. Moreover, by using the spatial

domain closed-form of the Green’s function and

by phenomenologically separating the relevant con-

tributions, we demonstrate that a significant re-

duction of computer times is indeed feasible and

achievable.

II. INTRODUCTION

The efficient evaluation of the impedance matrix

Z of a planar circuit is a crucial issue for achieving

accurate and fast analyses. The Z computation,

as attained by Method of Moments (MoM) dis-

cretization of the Mixed-Potential Integral Equa-

tion (MPIE) [1], [2], in fact, is not entirely straight-

forward, and the related numerical efforts are still

considerable.

In previous approaches, the numerical core of the

computation of the impedance matrix was repre-

sented by a time-demanding two-dimensional inte-

gration, even though several efforts have been made

to improve the convergence of this computation [3],

[4]. Some attempts in this sense have also been

made focussing on appropriate choices of the basis

and test functions [5], with attention paid on the

meshing performed on the problem’s domain.

In this paper, a substantial enhancement of the

efficiency of the impedance matrix evaluation is

achieved by reducing the two-dimensional integra-

tion to a single-dimension one. Even though this is

achieved by partitioning the problem domain into

equal cells, this does not represent a limitation to

the presented technique, as different optimum sizes

for the elementary cells can be automatically de-

tected in several regions of a single circuit, so that

an optimum accuracy is ensured.

Moreover, a detailed study on the phenomenolog-

ical behaviour of the impedance matrix elements is

performed, and its conclusions implemented so that

substantial speed-ups are achieved.

111, Z-MATRIX EVALUATION

Let us denote with Es the scattered electric field,

with Z~ and Js the surface impedance and electric

current densit,y, respectively, and let us introduce
.

the Green’s functions GA and Gg for the surface

electric current density Js and for the surface elec-

tric charge density qs. With the above notation the

standard MPIE is written as:

n x Ee(r) = n x (ZsJs –ju JG=A . Js dS’+
s

/
V s Gq . qs dS’)

(1)

Closed-form Green’s functions can be used [6],

[7], [8], expressed as the sum of three main contri-

butions:

● direct terms and quasi-dynamic images;

● surface waves;

● complex images;
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so that we can write them as:

G& = G#..,O + G&~w + G$?,ti

Gq = G$ + G:w + G~i

Equation (1) is discretized and solved using

Galerkin’s MoM, producing a linear system

A. E@cient Evaluation Via 1-D Integration

(2)

the

(3)

The entries Zij in the impedance matrix repre-
sent the tangential electric field generated by the
j-th basis function and weighted by the i-th test
one. In previous approaches [5], the entries of the
matrix in (3) are expressed as a four-dimensional
integral:

‘fG*”>=//f’zy’//G”(zy(dz’dy’dzdyzdy ‘4)

r = ~(x – Z’)2 + (y – y’)2, and the four-fold in-

tegration appearing in (4) is therein transformed

into a two-dimensional one. In this contribution,

we show how the latter integration can be reduced

to a one-dimensional integral.

The usual change of variables,

X—x’=u X+x’=p

y–yl=u y+y’=q
(5)

reduces the problem to a double integration,

hence providing

//f,~v,//G(/,z-x),+,v-v,,)

g(z’, y’) dx’ dy’ dx dy = $
//

G(IL,V)

// (?J+p V+q
f --j---, ---iJ--)(

g p–u q–v

T’ 2–)
dp dq du dv

Letting D. be the domain for the x-variable, we
can write

(6)

Now we have a two-variable integration

//
G(u> v)S(U, V) dU@ (7)

D(u) D(v)

With the following new change of variables:

u=rcos< v=rsin< (8)

we can write:

//
G’(u, v)S(U, V) dudv =

D(IL) D(.)

‘l:G(”)”J:;

S(T cos~, rsin~) 02$dr (9)

Thanks to the fact that the Green’s functions

only depend on the source-test distance r, W(r)

can be evaluated in closed form:

~ 42(T)

~(r) = J,(,) S(r cost, r sin~) d~ (lo)

Finally we have:

//’(x’)// JG( (r – X’)2 + (y – Y’)2)

g(x’, y’) dx’ dy’ dx dy = (11)

J

‘r2

= W(r) G(r)r dr
T1

Using polar coordinates Green’s functions are not

singular, and with a suitable choice [5] of basis and

test functions W(r) is integrable in Riemann sense.

The S(u, v) and W(r), as well as the forms of do-

mains D(p) and D(q), cl(r) and &2(r), T1 and r2,

depend on the choice of the basis and test functions

and their domain of definition,
After evaluating W(r),

be written as:

Zzz =
/[

WI. (r)Gjm (r) –

r.,

the Z-matrix terms

~1723(r)G’(r)] r dr

Zzv =
][

–~Ws.(r)Gg(r)] r dr

Zvz =
/[

–~Wa ~(r) Gq(r)] r dr

Zvv =
/[

WI .(T) Gj.(r) – ~w2,(r)Gq(r)] r dr

thus demonstrating that the elements of

can

(12)

the

impedance matrix can be evaluated by solving a

one-dimensional integral.
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B. Results with l-D Integration

The accuracy and efficiency of the implemented

method is demonstrated for a patch antenna, re-

ported in the literature [7], and sketched in Fig. 1.

In Fig. 2 we compare the time performance of an

MPIE/MoM package implementing a 1-D integra-

tion of the (4) with respect to the previous 2-D inte-

gration proposed by [5], In the x-axis the required

numerical accuracy is reported, on the y-axis the

corresponding computing time for both approaches.

As easily predictable, the 1-D integration is highly

superior. From the circuit schematic in Fig. 1, it

is also apparent that the requirement of an equal-

cell meshing is not limiting, as suitable sizes of ele-

mentary cells for the different regions of a complex

circuit can automatically be detected with simple

heuristic considerations.

IV. PHENOMENOLOGICAL BEHAVIOUR OF THE

Z-MATRIX ELEMENTS

The 1-D integration significantly reduces the

computation time of the impedance matrix. In ad-

dition, further advantage can be attained by con-

sidering the behaviour of the integration kernels in

(12). A major role in the numerical evaluation of

(12), is played by the Green’s function; its expres-

sion as reported in (2) separates the contribution

of different physical phenomena (quasi-static, sur-

face waves and complex images) in the interactions

among cells,

Therefore, by considering each element of the

Z matrix as the sum of the three above men-

tioned contributions, a phenomenological analysis

has been performed in order to investigate how

these contributions are linked with the circuit phys-

ical parameters. Referring to the circuit in Fig. 1,

results are sketched in Table I, where, for the sake

of conciseness, we report just some of the avail-

able results. It can be observed that for each ele-

ment of the impedance matrix, the three Green’s

function’s contributions are separated, and a num-

ber of cells along x and y directions determined,

so that the corresponding contribution can be ne-

glected for distances between basis and test greater

than that number of cells, For instance, we under-

stand from Table I that the basis-test interaction

for the quasi-static term 2ZZ0 is effective for dis-

tances smaller than 11 cells along x, and 9 cells

along y, as well as the surface wave contribution

can be nearly neglected. We consider negligeable

each interaction smaller than 10–5ZZZ (O, O)., where

ZZZ(O, 0)0 is the direct-term evaluated-in the (0,0)

cell (the same term is the maximum entry in the

impedance matrix).

Z element x-cells y-cells

zxx o 11 9

zXxsw 1 2

zXzci 7 6

zXy o 6 6

zXVSw o 0
zXyci 7 64

Table I

A. Results Achieved by Exploiting the Phenomeno-

logical Analysis

The phenomenological analysis has demonstrated

that, for a fixed threshold, some contributions in

the integration kernels in (12) can be omitted,

with a consequent enhancement in the code per-

formance. Moreover, and of much higher impact,

we can avoid the computation of many interacting

terms, which prove to be nearly negligeable. In

fact, the use of the above mentioned 10–5 thresh-

old affects the final results with a maximum error

of less than lYo.
The implementation of the results of the phe-

nomenological analysis allows a huge speed-up. Re-

ferring to the circuit in Fig. 1, in Table II the use

of a traditional approach is compared with our ap-

proach, implementing a 1-D integration technique

and a phenomenological analysis. Times (in sec-

onds) refer to the evaluation of the Z-matrix for a

single frequency point. An IBM RS6000 250 T has

been used.

Method Computing Time

Standard 2040

With 1-D Int. 411

With 1-D Int.+

Phen. An. 86

Table II

V. CONCLUSION

In this paper we have introduced a procedure for

evaluating the elements of the impedance matrix,

as resulting from the mixed-potential integral equa-

tion, via a single one-dimensional numerical inte-

gration.
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Moreover, we have also shown that it is possible

to take advantage of the fact that the direct term,

the surface waves and the complex images appear-

ing in the spatial domain closed-form Green’s func-

tion play different roles according to the problem

geometrical parametrization. Hence, depending on

the respective positions of basis and test functions,

we can neglect some contributions without loss of

accuracy and with significant reduction of the nu-

merical burden. Speed-ups of more than 22 times

have been observed, with respect to the previous

state-of-the art implementations of the same ap-

proach.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

J. R. Mosig and F. E. Gardlol, “General integral equa-
tion formulation for rnicrostrip antennas and scatter-
ers”, Proc. Inst. Elec. Eng., pt. H: Microwave Optics

Antennas, vol. 132: pp. 424-432, Dec. 1985.

J. R. Mosig, “Arbitrarily shaped microstrip structures
and their analysis with a mixed potential integral equa-
tion”, IEEE 7kans. Microwave Theory Tech., vol. 36:

pp. 314–323, Feb. 1988.

L. Barlatey, J. R. Mosig and T. Sphlcopoulos, “Analysis

of st acked microstrip patches with a mixed potential in-

tegral equation”, IEEE Trans. Microwave Theory Tech.,

vol. 38: pp. 608-615, May 1990.

M. I. Aksun and R. Mittra, “Estimation of spuri-

ous radiation from microstrip etches using closed-form

Green’s functions”, IEEE Tkans. Microwave Theory

Tech., vol. 40: pp. 2063–2070, Nov. 1992.

M. 1. Aksun and R. Mittra, “Choices of expansion and

testing functions for the method of moments applied

to a class of electromagnetic problems”, IEEE Trans.

Microwave Theory Tech., vol. 41: pp. 503–508, Mar.

1993.

M. I. Aksun and R. Mittra, “Derivation of closed-form

Green’s functions for a general microstrip geometry”,

IEEE Trans. Microwave Theory Tech., vol. 40: pp.

2055–2062, NOV. 1992.

G. Dural and M. I. Aksun, “Closed-form Green’s func-

tions for general sources and stratified media”, IEEE
Trans. Microwave Theory Tech., vol. 43: pp. 1545-1552,

Jul. 1995.

N. Kynaiman and M. I. Aksun, “Efficient and .4CCU-

rate EM Simulation Technique for Analysis and Design

of MMICS”, Int. J. MW and MM Wave Comp. Aided

Eng., vol. 37: pp. 344-358, Sept. 1997.

(a)

(b)

Fig. 1. Input impedance on the Smith chart (b) of

the microstrip line center fed square antenna with

a tuning stub (a), Physical dimensions: q. = 2,62,

d = 0,794 mm, a = b = 28.6 mm, w = 2.2 mm, 1P

= 26.4 mm, 1. = 4.4 mm, ds = 4,4 mm. Frequency

range: 2.98-3.3 GHz.

Accuracy

Fig. 2. A comparison between the 1-D and the 2-D inte-

gration’s performance. Times refer to a PC Pentium

100 MHz. On the x-axis, the accuracy required to

make the integration converge is reported.
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